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Abstract. Scalable bitstreams are used today to contribute to the Uni-
versal Multimedia Access (UMA) philosophy, i.e., accessing multimedia
anywhere, at anytime, and on any device. Bitstream structure descrip-
tion languages provide means to adapt scalable bitstreams in order to
extract a lower quality version. This paper introduces a real-time XML-
based framework for content adaptation by relying on BFlavor, a com-
bination of two existing bitstream structure description languages (i.e.,
the MPEG-21 Bitstream Syntax Description Language (BSDL) and the
Formal Language for Audio-Visual Representation extended with XML
features (XFlavor)). In order to use BFlavor with state-of-the-art media
formats, we have added support for transparent retrieval of context in-
formation and support for emulation prevention bytes. These extensions
are validated by building a BFlavor code for bitstreams compliant with
the scalable extension of the H.264/AVC specification. Performance mea-
surements show that such a bitstream (containing a bitrate of 17 MBit/s)
can be adapted in real-time by a BFlavor-based adaptation framework
(with a speed of 27 MBit/s).

Key words: BFlavor, content adaptation, H.264/AVC Scalable Video
Coding

1 Introduction

People want to access their multimedia content anywhere, at anytime, and on
any device. This phenomenon is generally known as Universal Multimedia Ac-
cess (UMA) [1]. However, the huge heterogeneity in multimedia formats, network
technologies, and end-user devices causes problems for content providers. They
want to create their content once whereupon they can distribute it to every
possible end-user device using every possible network technology. Scalable video
coding is a solution for this multimedia diversity problem. It enables the extrac-
tion of multiple (lower quality) versions of the same multimedia resource without
the need for a complete encode-decode process.

The use of scalable bitstreams implies the need of an adaptation system in
order to extract lower quality versions. To support multiple scalable bitstream
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formats, a generic approach is needed for the adaptation of these scalable bit-
streams. As explained in [2], bitstream structure description languages can be
used to build an adaptation system which supports multiple bitstream formats
and which can easily be extended for new bitstream formats. A Bitstream Struc-
ture Description (BSD), which is typically an XML document containing infor-
mation about the high-level structure (information about packets, headers, or
layers of data) of a bitstream, is generated by a bitstream-to-BSD parser. Ac-
cording to a given set of constraints, the BSD is transformed, resulting in a
customized BSD. Because of the high-level nature of the BSD, only a limited
knowledge about the structure of a bitstream is required to perform this trans-
formation. Based on an adapted version of the BSD, an adapted bitstream is
created with a BSD-to-bitstream parser.

In this paper, special attention is paid to the BSD generation process, which
needs the most computations. In Sect. 2, we introduce BFlavor, a new descrip-
tion tool that harmonizes two existing bitstream structure description languages.
Section 3 elaborates on some extensions for BFlavor in order to fulfil the short-
comings of the previous version of BFlavor. This enables the creation of a BFlavor
code for H.264/AVC’s scalable extension which is discussed in Sect. 4. Finally,
the conclusions are drawn in Sect. 5.

2 Using BFlavor to Describe Bitstreams

In this paper, we use BFlavor (BSDL + XFlavor) to create BSDs. BFlavor is a
combination of two existing technologies for generating bitstream structure de-
scriptions (i.e., the MPEG-21 Bitstream Syntax Description Language (MPEG-
21 BSDL) and the Formal Language for Audio-Visual Representation extended
with XML features (XFlavor)).

2.1 MPEG-21 BSDL and XFlavor

MPEG-21 BSDL is a tool of part 7 (Digital Item Adaptation, DIA) of the MPEG-
21 specification. It is built on top of the World Wide Web Consortium’s (W3C)
XML Schema Language and is able to describe the structure of a (scalable) bit-
stream in XML format [3]. The Bitstream Syntax Schema (BS Schema), which
contains the structure of a certain media format, is used by MPEG-21’s Binto-
BSD Parser to generate a BSD for a given (scalable) bitstream. After the BSD
is transformed, an adapted bitstream is created by using the BSDtoBin Parser,
which takes as input the BS Schema, the customized BSD, and the original
bitstream.

XFlavor is a declarative C++-like language to describe the syntax of a bit-
stream on a bit-per-bit basis. It was initially designed to simplify and speed up
the development of software that processes audio-visual bitstreams by automat-
ically generating a parser for these bitstreams. By extending this automatically
generated parser with XML features, it was possible to translate the syntax of
a bitstream in XML format [4]. The XFlavor code, which contains a description
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Fig. 1. BFlavor-based adaptation chain

of the syntax of a certain media format, is translated to Java or C++ source
classes. This set of source classes is compiled to a coding format-specific parser.
XFlavor comes with the Bitgen tool for creating an adapted bitstream, hereby
guided by the customized BSD.

MPEG-21 BSDL and XFlavor can be used as stand-alone tools [7], but both
have pros and contras. XFlavor’s bitstream generator (i.e., Bitgen) only uses in-
formation from the BSD and thus is independent of the XFlavor code. Hence, the
complete bitstream data are actually embedded in the BSD, resulting in poten-
tially huge descriptions. On the contrary, MPEG-21 BSDL makes use of a specific
datatype to point to a data range in the original bitstream when it is too verbose
to be included in the description (i.e., by making use of the language construct
bs1:byteRange). This results in BSDs containing only the high-level structure
of the bitstream. The strengths of XFlavor are the fast execution speed and
the low and constant memory consumption of the coding format-specific parser,
while the BintoBSD Parser of MPEG-21 BSDL struggles with an unacceptable
execution speed and increasing memory consumption caused by an inefficient
XPath evaluation process. This is due to the fact that the entire description of
the bitstream structure is kept in system memory in order to allow the evaluation
of arbitrary XPath 1.0 expressions.

2.2 BFlavor

As described in [5], BFlavor combines the strengths of MPEG-21 BSDL and
XFlavor. As such, BFlavor allows generating a compact high-level BSD at a fast
execution speed and with a low memory consumption. The BFlavor-based adap-
tation chain is illustrated in Fig. 1. The BFlavor code describes the structure
of a specific bitstream format in an object-oriented manner. The bflavorc trans-
lator uses this code to automatically generate Java source classes. These Java
source classes have to be compiled to a coding format-specific parser. This parser
generates a BSD which is compliant with the BSDL-1 specification of MPEG-
21 BSDL. After the transformation of the BSD, the customized BSD is used
by MPEG-21 BSDL’s BSDtoBin Parser to create an adapted bitstream, suited
for the targeted usage environment. The BSDtoBin Parser needs a Bitstream
Syntax Schema (BS Schema). This schema contains the structure of a specific
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Hash table containing RC = Regular Class
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Fig. 2. (a) BFlavor code example for the first type of context information. (b) Steps
for processing context classes

bitstream format, analogous to the BFlavor code. Therefore, the bflavorc trans-
lator is also able to generate such a BS Schema from the BFlavor code. Thus,
the BSDtoBin Parser uses the customized BSD, the generated BS Schema, and
the original bitstream to generate an adapted bitstream.

3 Extending BFlavor

Although BFlavor outperforms MPEG-21 BSDL and XFlavor in terms of exe-
cution time, memory consumption, and BSD size when parsing for example an
H.263-compliant bitstream [6], it still contains some shortcomings in order to
describe state-of-the-art media formats. In this section, attention is paid to two
important problems: the collection of context information and the occurrence of
emulation prevention bytes.

3.1 Collection of Context Information

When parsing a bitstream of a specific coding format, information about pre-
viously parsed bits is often needed to correctly steer the parsing process. This
information is called context information. There are two types of context in-
formation. First, there is context information which is located within a fixed
distance of the place in the bitstream where the context information is needed.
An example of this type of context information is illustrated in Fig. 2(a). In
this figure, a fictive BFlavor code fragment of a sequence of pictures with their
headers is shown. The picture can access the context information located in the
header by making use of the parameter mechanism in BFlavor. As one can see,
access to this type of context information is already supported by BFlavor.

A second type of context information is information not necessarily appearing
within a fixed distance of the current parsing position. For example, the header
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in Fig. 2(a) could be repeated within the bitstream (containing other values). In
this case, the parameter mechanism will not work anymore because we do not
know which header will be active for the current picture at the time of writing
the BFlavor code. A first example of coding formats, which make use of such a
context information mechanism, are H.264/AVC and its scalable extension [8]
(use of Sequence Parameter Sets (SPS) and Picture Parameter Sets (PPS)) which
is further discussed in Sect. 4. A second example is SMPTE’s Video Codec 1
(VC-1) (use of Sequence Headers and Entry-point Headers).

We have extended BFlavor to solve the problem of the second type of context
information. It is now possible to mark a class in the BFlavor code as a context
class (e.g., the SPS class in H.264/AVC). This is done by using the context ver-
batim code, as illustrated on line 5 in Fig. 4. The argument within the verbatim
code is the name of the index element of the context class. This index element
is used to access a specific instance of the context class. If the context class does
not have an index element, no argument is given in the verbatim code. In this
case, always the last occurrence of the context class will be active (examples are
the Sequence headers and Entry-point headers of VC-1). When a context class
is parsed, every syntax element together with its value is stored in a hash table.
Based on the value of the index element of the context class, the context class
is stored on the right place in the hash table, as illustrated in Fig. 2(b) (the
context class SPS is stored in the hash table based on the SPS_id element).

To access a context class from within the BFlavor code, a new built-in func-
tion is defined: getcontext (). The working is illustrated in Fig. 2(b). This func-
tion can only be used in regular classes (i.e., classes that are not context classes).
The value of element el of context class SPS with index element equal to 0 is
obtained by specifying the following arguments to the getcontext() function:
the name of the context class (as a string), the value of the index element (as an
integer), and the name of the actual element (as a variable prefixed with a $).
Note that always the last occurence of the context class with the specific index
element value will be accessed. When the getcontext () function with the same
arguments (as shown in Fig. 2(b)) is called for the second time, the value of the
element el is different (it is first equal to 2; the second time, it is equal to 4).
Other examples of the getcontext () function are shown in Fig. 4.

3.2 Emulation Prevention Bytes

A second problem we have to deal with, is the occurrence of emulation prevention
bytes in a bitstream. Coding formats such as MPEG-1/2 Video and MPEG-4
Visual prevent start code emulation by adding restrictions to values of syntax
elements (forbidden values). More recent coding formats such as H.264/AVC,
VC-1, and the wavelet-based Dirac specification use the mechanism of emula-
tion prevention bytes. When a start code occurs coincidentally in the bitstream,
an emulation prevention byte is inserted in order to prevent a start code emula-
tion. For example, when an H.264/AVC coded bitstream contains the start code
0x000001 by accident, the emulation prevention byte 0x03 is inserted resulting
in the following bitstream fragment: 0x00000301.
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fragment wrong <e2>3</e2> | (1)
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Fig. 3. Example of an emulation prevention byte

These emulation prevention bytes cause problems when using BFlavor, as
illustrated in Fig. 3. The fourth byte (0x03) is an emulation prevention byte.
The given BFlavor code fragment results in a wrong description (1) shown in
Fig. 3. This is because the current version of BFlavor does not take into account
the occurrence of emulation prevention bytes.

To solve this problem, we have extended BFlavor with two new verbatim
codes (i.e., emulationBytes and emulateBytes) as illustrated on the first two
lines of Fig. 4. The emulationBytes verbatim code is used by BFlavor to ignore
the emulation prevention bytes. A list of couples (code with emulation preven-
tion byte, code without emulation prevention byte) is given as an argument to
this verbatim code. With this information, BFlavor can now correctly describe
the bitstream given in Fig. 3, resulting in description (2). Obviously, the process
to construct a bitstream from a given bitstream structure description (i.e., the
BSDtoBin Parser of MPEG-21 BSDL) must also support the use of emulation
prevention bytes. Therefore, the emulateBytes verbatim code tells an enhanced
version of the BSDtoBin Parser which codes have to be emulated. The argu-
ment of this verbatim code is a list of couples (code which cannot appear in the
bitstream, emulated version of the code).

4 A BFlavor Code for H.264/AVC Scalable Video Coding

4.1 Joint Scalable Video Model

The Joint Video Team (JVT) has started the development of the Joint Scalable
Video Model (JSVM), which is an extension of the single-layered H.264/AVC
coding format. It is now possible to encode an video sequence once at the highest
resolution, frame rate, and visual quality, after which it is possible to extract
partial streams containing a lower quality along one or more scalability axes
(i.e., the temporal, spatial, and Signal-to-Noise Ratio (SNR) axis).

As discussed above, the scalable extension of H.264/AVC makes use of emula-
tion prevention bytes as well as context classes (i.e., SPSs and PPSs). Therefore,
we have created a BFlavor code for JSVM version 5 in order to evaluate the
extensions we added to BFlavor. An excerpt of this code is shown in Fig. 4.

4.2 BFlavor Code for JSVM-5

A JSVM-5-compliant bitstream is a succession of Network Abstraction Layer
Units (NALUs). Next to the slice layer NALU, there are three main categories
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1:%emulationBytes{ (000003, 0000); %emulationBytes}
2:%emulateBytes{ (000000, 00000300); (000001, 00000301);
3: (000002, 00000302); (000003, 00000303); %emulateBytes}
4:

5:%context{seq_parameter_set_id%context}

6:class Seq_parameter_set_rbsp{

7: bit(8) profile_idc;

8: /7. ..

9: bit(8) level_idc;

10: UnsignedExpGolomb seq_parameter_set_id;

11: if(profile_idc == 83)

12: /7. ..

13:}

14:

15:%context{pic_parameter_set_id%context}
16:class Pic_parameter_set_rbsp{

17: UnsignedExpGolomb pic_parameter_set_id;
18: UnsignedExpGolomb seq_parameter_set_id;
19: bit(1) entropy_coding_mode_flag;

20: /7. ..

21:}

22:

23:class Slice_header(int nal_unit_type, int nal_ref_idc){
24: UnsignedExpGolomb first_mb_in_slice;

25: UnsignedExpGolomb slice_type;

26: UnsignedExpGolomb pic_parameter_set_id;
27: bit(getcontext(‘'Seq_parameter_set_rbsp",

28: getcontext('Pic_parameter_set_rbsp", pic_parameter_set_id.value, $seq_parameter_set_id),
29: $log2_max_frame_num_minus4 ) + 4 ) frame_num;

30: /7. ..

31:}

32:

33:class Nal_unit_header_svc_extension{
34: bit(6) simple_priority_id;
35: bit(l) discardable_flag;
36: bit(l) extension_flag;

37: if(extension_flag == 1){
38: bit(3) temporal_level;
39: bit(3) dependency_id;
40: bit(2) quality_level;
41:

42:}

Fig. 4. An excerpt of the fine-granulated BFlavor code for JSVM-5

of NALUs: SPSs containing information related to the whole sequence; PPSs
containing information related to a set of pictures; Supplemental Enhancement
Information (SEI) NALUs containing additional information that is not needed
to correctly decode the bitstream. The first NALU in the bitstream is a SEI
NALU containing scalability information (i.e., information about the different
scalability axes). This NALU is followed by a set of SPSs and PPSs. Every slice
refers to a PPS and every PPS refers to an SPS. As a consequence, every SPS
and PPS has to be kept in memory during the BSD generation process. In our
BFlavor code, both the SPS and the PPS classes are context classes. In the slice
header class, values of the SPS and PPS can be obtained by making use of the
getcontext () built-in function. One can also see the signalling of emulation
prevention bytes on the first two lines of the code.

4.3 Performance Results
In order to evaluate the performance of our BFlavor-based adaptation chain,
we have generated five encoded scalable bitstreams compliant with the JSVM-5

specification. A part of the trailer the new world ' was used with a resolution

! This trailer can be downloaded from http://www.apple.com/trailers.
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of 1280 x 512 pixels at a frame rate of 24Hz. The encoded bitstreams contain 5
temporal, 4 spatial, and 3 quality levels.

For each bitstream, the corresponding BSD is generated once by making use
of BFlavor and once by making use of an optimized version of the BintoBSD
Parser of MPEG-21 BSDL, as explained in [9]. The transformation of the BSD is
done by making use of Streaming Transformations for XML (STX) [10]. Joost (v.
2005-05-21) is used as STX engine. Finally, the adapted bitstream is generated
by using an enhanced version of MPEG-21 BSDL’s BSDtoBin Parser, using as
input the transformed BSD, the BS Schema, and the original bitstream. We
also used two BFlavor codes with a different granularity. The first BFlavor code
describes the syntax of the JSVM-5 bitstream up to and including the NALU
header for the slices. The second BFlavor code describes the syntax of the slices
up to and including the slice header. Performance measurements were done on
a PC having an Intel Pentium D 2,8GHz CPU and 1GB of RAM at its disposal.
Every step was executed five times, whereupon the average was calculated.

As one can see in Fig. 5, the BFlavor-based adaptation chain is executed
in real-time (in contrast to the MPEG-21 BSDL-based adaptation chain). Note
that in this figure the resolution of the video sequence was rescaled to 640 x 256
pixels. Both technologies have a linear behavior in terms of execution time, a
constant memory consumption (circa 3 MB for BSD generation), and a relatively
compact BSD (26 MB uncompressed or 317 KB compressed with WinRAR 3.0’s
default text compression algorithm when the size of the bitstream is 176 MB).

Although the optimized version of MPEG-21 BSDL’s BintoBSD parser shows
the same characteristics in the performance measurements, there is a remarkable
difference when we look at the BSD generation time (see Fig. 6). When parsing
the JSVM-5-compliant bitstream up to and including the slice header, a lot
of information has to be retrieved from the active SPS and PPS. This is not
the case when parsing up to and including the NALU header. The BFlavor-
based adaptation chain can adapt a JSVM-5-compliant bitstream in real-time
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Table 1. Execution time results of the adaptation chain. (limited) points to a descrip-
tion up to and including the NALU header

Techniques | #Pic. BSD STX | Bitstream | Total Speed
generation generation | time
(s) (s) (s) (s) | (Mbit/s)
50 0.4 1.4 0.8 2.6 2.2
250 1.7 3.0 1.2 5.9 11.2
BFlavor 500 6.4 5.0 1.9 13.4 23.5
(limited) 1000 13.3 9.0 3.0 25.4 26.2
2000 27.9 17.0 5.6 50.4 27.9
50 0.4 1.7 1.5 3.6 1.6
250 2.1 4.0 3.7 9.8 6.8
BFlavor 500 7.2 6.8 6.7 20.6 15.2
1000 14.7 13.4 12.3 40.4 16.5
2000 30.1 26.4 23.7 80.3 17.5
50 3.0 1.5 0.8 5.5 1.0
250 11.8 3.3 1.4 16.5 4.0
BSDL 500 32.8 5.5 2.1 40.4 7.8
(limited) 1000 66.2 9.8 3.2 79.3 8.4
2000 134.5 18.6 5.7 158.8 8.9
50 23.9 1.9 1.7 27.4 0.2
250 114.8 5.3 4.0 124.1 0.5
BSDL 500 238.6 9.5 7.2 255.3 1.2
1000 474.8 17.7 13.3 505.9 1.3
2000 954.1 34.1 25.5 1013.7 1.4

when parsing up to and including the slice header, as illustrated in Table 1 (80 s
needed for a sequence of 83 s). Looking at the MPEG-21 BSDL-based adaptation
chain, we see a significant loss of performance when parsing up to and including
the slice header. It is clear that the use of hash tables by BFlavor performs much
better than the XPath evaluation mechanism used in MPEG-21 BSDL for the
retrieval of context information.

5 Conclusions

In this paper, we have extended BFlavor, which is a combination of the fast BSD
generation speed and constant memory consumption of XFlavor and the possibil-
ity to create the compact BSDs of MPEG-21 BSDL. Support for the transparent
retrieval of context information and support for emulation prevention bytes were
added to BFlavor. The transparent retrieval of context information is realized
by making use of hash tables. Emulation prevention bytes are signalled on top
of the BFlavor code. Both features were needed to create a BFlavor code for the
JSVM version 5. Performance measurements have shown that a BFlavor-based
adaptation chain for JSVM-5-compliant bitstreams operates in real-time.
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